منابع مشابه
Non-Commutative Sylvester's Determinantal Identity
Sylvester’s identity is a classical determinantal identity with a straightforward linear algebra proof. We present combinatorial proofs of several non-commutative extensions, and find a β-extension that is both a generalization of Sylvester’s identity and the β-extension of the quantum MacMahon master theorem.
متن کاملNon-commutative Sylvester’s determinantal identity, preprint
Sylvester's identity is a classical determinantal identity with a straightforward linear algebra proof. We present a new, combinatorial proof of the identity, prove several non-commutative versions, and find a β-extension that is both a generalization of Sylvester's identity and the β-extension of the MacMahon master theorem.
متن کاملA Determinant of the Chudnovskys Generalizing the Elliptic Frobenius-Stickelberger-Cauchy Determinantal Identity
D.V. Chudnovsky and G.V. Chudnovsky [CH] introduced a generalization of the FrobeniusStickelberger determinantal identity involving elliptic functions that generalize the Cauchy determinant. The purpose of this note is to provide a simple essentially non-analytic proof of this evaluation. This method of proof is inspired by D. Zeilberger’s creative application in [Z1]. AMS Subject Classificatio...
متن کاملA Determinantal Formula for Supersymmetric Schur Polynomials
We derive a new formula for the supersymmetric Schur polynomial sλ(x/y). The origin of this formula goes back to representation theory of the Lie superalgebra gl(m/n). In particular, we show how a character formula due to Kac and Wakimoto can be applied to covariant representations, leading to a new expression for sλ(x/y). This new expression gives rise to a determinantal formula for sλ(x/y). I...
متن کاملA determinantal formula for the Hilbert series of one-sided ladder determinantal rings
We give a formula that expresses the Hilbert series of one-sided ladder determinantal rings, up to a trivial factor, in form of a determinant. This allows the convenient computation of these Hilbert series. The formula follows from a determinantal formula for a generating function for families of nonintersecting lattice paths that stay inside a one-sided ladder-shaped region, in which the paths...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1985
ISSN: 0024-3795
DOI: 10.1016/0024-3795(85)90248-4